
Mesh Testbed for Multi-channel MAC Development:
Design and Experimentation

Shashi Raj Singh
Electrical and Computer Engineering

National University of Singapore
Singapore

singh_shashiraj@yahoo.com

Mehul Motani
Electrical and Computer Engineering

National University of Singapore
Singapore

motani@nus.edu.sg

ABSTRACT
Multi-channel access presents a huge potential to boost the perfor-
mance of 802.11 mesh/adhoc networks. It allows multiple simul-
taneous transmissions in a given radio neighborhood that improves
network throughput and scalability. Still, its research is limited to
simulations only and its experimental study is rare. To bridge this
gap, we have setup a testbed called OpenWireless to develop and
test multi-channel MAC protocols in a mesh/adhoc scenario. The
testbed consists of 20 nodes that are based on commodity hard-
ware and use the Linux 802.11 networking architecture for wire-
less applications. In this paper, we present the design of the testbed
and development experience gained. We will discuss experimental
studies that identify some of the issues involved in using commod-
ity hardware for the multi-channel MAC development. In the end,
the paper also discusses the implementation of our multi-channel
MAC protocol and its experimental evaluation that validates the
potential of the multi-channel access in mesh/adhoc networks as
compared to the traditional single channel access.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: [Wireless communi-
cation]

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Mesh testbed, IEEE 802.11, multi-channel access, orthogonal chan-
nels, close interface effect, software MAC, Linux, ath5k.

1. INTRODUCTION
In the next few years, we will see a number of 802.11 mesh/adhoc

networks around us due to introduction of IEEE 802.11s and WiFi
Direct technologies. Current 802.11 networks work only in the
infrastructure mode where end user devices do not interact. The
new technologies will allow networks based on mesh/adhoc mode

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiNTECH’10, September 20, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0140-4/10/09 ...$10.00.

Figure 1: A customized PC.

where end user devices will interact. This will lead to plethora
of new devices and applications that will further boost the usage
of the WiFi technology. To take advantage of this emerging WiFi
landscape, research is already going on to create high performance
802.11 mesh/adhoc networks.

One approach to boost the network performance is the use of
multi-channel access in the network. In a mesh/adhoc scenario
where multiple devices try to communicate, traditional approach
of the single channel use can act as a bottleneck to the network
throughput and scalability. Also, the 802.11 standard theoretically
has 3 and 20 orthogonal channels in 2 and 5GHz bands respec-
tively. But the 802.11 network uses only single channel even when
other channels may be free, which is very inefficient. By employ-
ing multi-channel access in 802.11 mesh/adhoc networks, better
performance can be achieved by using all the possible channels in
the mentioned bands.

Multi-channel access enables a node to access multiple chan-
nels and thus allows multiple simultaneous transmissions in a given
radio neighborhood. This boosts the network throughput and al-
lows more nodes in the network. To realize its potential, a number
of multi-channel MAC design approaches [1, 3, 7–10, 12, 13, 15]
have been proposed in the past. These studies are based on simu-
lations only and experimental evaluation of multi-channel access
is rare. To bridge this gap and understand the potential of our
multi-channel MAC [9] in the real world, we have setup a wire-
less mesh testbed that is called OpenWireless testbed. A node in
the testbed consists of commodity hardware and uses the Linux
802.11 networking architecture for wireless protocol development
and application. In this paper, we first present the testbed details
including the node design issues involved. Then we discuss two
experimental studies, one on the number of orthogonal channels in
the 5 GHz band and the other on close interface effect present in a
commodity hardware. The former study explores the actual num-

ber of orthogonal channels in the 5 GHz band that can be used as
data channels for a 802.11 multi-channel MAC. The later discusses
about the interference due to the close PCI interfaces present in a
commodity hardware and its effect on the number of orthogonal
channels. In the end, we detail our multi-channel MAC protocol
implementation and its experimental evaluation. Initial experiment
results clearly demonstrate the potential of the multi-channel access
over the traditional single channel access in 802.11 mesh/adhoc
networks. Overall, the paper demonstrates how a commodity hard-
ware can be used to setup such a testbed and issues likely to be
faced, and how one can approach a multi-channel MAC implemen-
tation using the Linux 802.11 networking architecture.

We present some past work on mesh testbeds in Section 2 and
compare them with our testbed. In Section 3 and Section 4, we
discuss the design of our testbed and the development issues faced
respectively. Section 5 presents the two experimental studies. Then
in Section 6, we discuss the multi-channel MAC design, the imple-
mentation approach and it’s limitations and benefits. In Section 7,
we present system evaluation of the new MAC including perfor-
mance comparison with the 802.11 MAC. Section 8 concludes the
paper and discusses our future work.

2. RELATED WORK
In this section, we discuss some of the prior works on the mesh

testbed and would try to differentiate our work with them. MIT
Roofnet [4] is an experimental multi-hop 802.11 b/g mesh net-
work prototype which provides broadband Internet access to users
in Cambridge, MA. It consists of about 50 nodes among which a
few act as gateways to the wired Internet. Each node has a sin-
gle antenna and a single Ethernet port. A routing protocol is de-
signed such that the longest route is only four hops long. Extensive
measurements have been conducted on Roofnet. For instance, [2]
analyzes the patterns and causes of packet loss.

An urban mesh network is deployed in Houston which provides
high-speed Internet access to low-income communities. Camp et
al. [5] present measurements from the network, focusing on PHY
layer issues. The study aimed at characterizing the propagation en-
vironment and correlating received signal strength with application
layer throughput.

In [6], the authors deployed an initial testbed consisting of 7
mesh nodes to solve the communication needs of a traffic control
system called SCATS in Sydney, Australia. They placed nodes at
intersections with traffic lights, and carried out initial trial experi-
ments. The feature of the study is its focus on real-time communi-
cation.

The WAND project [14] built a multi-hop wireless ad hoc testbed
in the the center of Dublin, where 11 nodes were mounted on traffic
lights along a 2km route in urban area. Their topology is a chain
topology which is not usually the case in a mesh context.

MeshCluster [11] is a self-configuring and secure infrastructure
mesh network architecture, in which each nodes is equipped with
multiple radios. A subset of radio interfaces are used for providing
network access to end-devices and other radio interfaces are used
for forwarding packets to the nearest Internet gateway.

Our work differs from prior work of mesh testbeds in the fol-
lowing aspects: (1) prior testbeds are based on 802.11 MAC, but
we develop a new multi-channel MAC layer on top of the 802.11
PHY, (2) prior work focuses on deployment and measurement is-
sues and the development work was in the routing layer, our work
is in the MAC layer and focuses on throughput enhancement by
multi-channel use, (3) regardless of using single or multiple radios,
prior testbeds employ single-channel radios, whereas our testbed is
built on multi-channel radios and we measure the effect from us-

ing multiple radios in a node, and (4) prior work uses the 2.4 GHz
ISM band, but our work uses the 5 GHz band that provides more
available channels for a multi-channel MAC.

3. OPEN WIRELESS: THE TESTBED
The testbed consists of 20 nodes called customized PCs (CPC),

deployed in 4 adjacent labs. A node has two radios, which allows
it to act as a mesh access point (MAP) or as a mesh point (MP).
As mentioned before, a node is based on commodity hardware
and the Linux 802.11 networking architecture that comprises of the
Linux 802.11 subsystem, open source drivers and commercial WiFi
cards. Initially, we had two options for the node platform: 1) soft-
ware defined radio and 2) Linux 802.11 networking architecture.
Software defined radio platform (WARP, GNU radio) provides a
great degree of implementation freedom and flexibility as both the
physical and the MAC layers are reconfigurable. But mostly, it is
not interoperable with the IEEE 802.11 standard/WiFi commercial
products. If the goal is to evaluate and compare the performance
against commercial product, it is not a suitable choice. The Linux
802.11 networking architecture provides implementation flexibil-
ity that varies with the OSI layers. The PHY layer that resides in
the card cannot be changed. MAC layer and above are flexible and
can be modified to adopt new designs. The advantage it has over
the SDR platform is that implementations based on it can be com-
pared to the commercial products and so more acceptable. Due to
this, it is frequently used for development and testing of MAC and
routing protocols based on the IEEE 802.11 standard. Our goal
was to compare multi-channel MAC performance with commercial
802.11 products, so we chose the Linux 802.11 networking archi-
tecture. In the next subsections, we will discuss our MAC protocol
development approach and, the testbed hardware and software.

3.1 MAC development: Software MAC
We use the Linux 802.11 architecture for our MAC protocol de-

velopment. The architecture consists of Linux 802.11 subsystem,
open source driver and WiFi cards. The latest 802.11 subsystem is
mac80211, which we use in our testbed along with another subsys-
tem, net80211. We use Madwifi and ath5k open source drivers for
Atheros chipset based WiFi cards.

In the Linux 802.11 architecture shown in Fig. 2(a), the IEEE
802.11 MAC protocol is logically divided into two modules. One
module is in the card and implements control features that are time-
critical functions like distributed coordination function(DCF)). The
other module is in the form of the kernel subsystem, which is re-
sponsible for more delay-tolerant management sublayer functions
like authentication, association, etc., and 802.11 frame manage-
ment. The driver acts as an interface between the kernel world and
the wireless card and configures the PHY layer parameters, hard-
ware queues and the MAC control unit in the wireless card.

For MAC development, we disable the 802.11 control unit on
the card and implement the new MAC design completely in the
driver as a software MAC as shown in the Fig.2(a). This demands
high processing power and sometimes microsecond time resolution
(based on the MAC design) for running the software MAC state
machine.

3.2 Testbed: Node Hardware
The CPC is shown in Fig.1, its hardware specification was cho-

sen in an attempt to reduce its size without limiting it in terms of
processing power. We use Biostar G3I-M7 TE socket microATX
mainboard and core duo E5400 Intel processor (2.7 GHz) to make
up the base system. We chose a 4GB CF card as opposed to a hard
disk, which was sufficient to house an Ubuntu server edition oper-

(a) MAC development architecture. (b) Close Interface.

Figure 2: Development architecture & Close interface.

Figure 3: Close interface effect experiment.

ating system and also support protocol development activities. The
board provides two PCI interfaces that we use as wireless interfaces
by using Atheros based PCI WiFi cards. We use a combination of
2.4 GHz b/g and 5 GHz a/b/g WiFi cards. In addition to the attached
hardware, the board comes with a number of useful on-board fea-
tures. It allows on site configuration by providing a VGA port and
USB ports. This combination of interfaces can allow a monitor and
a keyboard to be attached for an operator access. An on-board Eth-
ernet interface is used for remote configuration of the nodes in the
testbed.

3.3 TestBed Software
A minimalistic Ubuntu server edition operating system is in-

stalled on the CPCs. We use ath5k driver and mac80211 for all
the protocol development and for creating mesh point interface.
For the AP interface, we use the hostapd daemon and the Mad-
wifi driver. The testbed control software is a Java based GUI on
top of the openbsd ssh server-client application, which is used to
monitor node health, remote setting of a number of node’s config-
urations/parameters and, experimentation and statistics collection.
The server resides on each of the CPCs, whereas the client with
the GUI resides on the control workstation. All communication be-
tween the control workstation’s client program and servers on the
CPCs is carried out on an Ethernet network. The Java GUI ap-
plication uses the iw configuration utility commands to configure
wireless interfaces of a node. We also add new command options
in the iw utility based on our requirements.

4. CPC DESIGN ISSUES
In the section, we discuss the main issues faced during the testbed

node design process and the corresponding solutions adopted.

1. Processing power & hirestimer support: There are many
COTS boards that support the Linux 802.11 architecture for
wireless applications. Soekris net4521 was an early candi-
date for our testbed node. During the MAC protocol devel-
opment process, we found that the board was not capable of
meeting software MAC (Fig.2(a)) development requirements.
The board comes with a 133MHz 486 class processor, 64MB

RAM, an Ethernet port and two cardbus interfaces for wire-
less applications. Although the hardware components met
our specifications, the processing power fell short. We found
that a great deal of packet dropping would take place for a
software MAC implementation due to delayed event firing.
Also, we were not able to configure and use the high resolu-
tion timer (hirestimer), which is critical for the implementa-
tion of a software MAC with strict timing requirements (mi-
cro second resolution). Apart from this, the RAM was a very
tight fit for an operating system. In our initial work, we ran
the Gentoo OS on the board and found that the low process-
ing power forced us to carry out all CPU intensive activities
such as installation and compiling on a separate workstation.

After this, we decided to build our own node based on com-
modity hardware. From the experience of the Soekris board,
we realized that high processing power is required for the
implementations where the MAC state machine runs in the
driver. Some software MAC implementation will require mi-
crosecond resolution to run, which can only be provided by
hirestimers. Standard Linux timers that are HZ based cannot
be used in such implementations as their resolution is lim-
ited to millisecond. We decided to go for a much higher
processing power board with hirestimer support. We did
some research on the hirestimer support and came to the
conclusion that the requirements can be divided into hard-
ware requirement and software requirement. In the former
case, hirestimer requires time stamp counter(TSC) to fuc-
ntion. TSC is present in all x86 processors since the Pen-
tium. In the later case, HRT API can only be used if CON-
FIG_HIGH_RES_TIMERS is enabled in the kernel, which
was merged in kernel 2.6.21. So based on the requirements,
we looked for a suitable board that is described in the section
3.2.

2. Reset on hang: In a testbed deployed over a large area, ca-
pability of a node to reset on hang is a must. During proto-
col development stages, it is frequent that nodes hang and so
remote reset is not possible. Manually resetting the node ev-
erytime it hangs, can be hectic. For the solution, we use the
watchdog timer present on the board that resets the node if it
does not receive pulses from a program for a given duration
of time.

3. Close Interfaces: The PCI interfaces that we use as wireless
interfaces are placed close on commodity boards, as shown
in Fig. 2(b). This arrangement creates interference issue un-
der certain operational conditions. If we only use a single in-
terface or use both the interfaces in different bands like one

(a) Orthogonal channels results. (b) Close interface results.

Figure 4: Experiment results.

in the 2.4 GHz and the other in the 5 GHz band, there is
no interference issue. But if both the interfaces work in the
same band and traffic load is high, we find interference and
throughput degradation, which is irrespective of the channel
spacing between the channels in use. To resolve the issue,
we use cable to put the antennas at a distance. We also tried
using PCI extender to put the interfaces apart, but they cause
system hang. We will discuss the effects of close interface in
detail in the next section.

4. Channel switching delay: Multi-channel access requires min-
imum possible channel switching delay, preferably less than
200 microseconds. Open source drivers do not have any
function specifically for fast channel switching. Most of them
reset the card to change channel that incurs millisecond order
delay, which is a huge overhead for a multi-channel MAC.
After some research, we found that some Atheros chipsets
support fast channel switching. The method called synth
only change is much faster than resetting the whole chip. We
use the card with the required chipsets and introduced a new
function in the driver to implement synth only change. Our
implementation takes around 600 microseconds for channel
switching. Since the COTS WiFi cards are not optimized for
fast channel switching requirements, we cannot achieve val-
ues close to 200 microseconds or less without having packet
loss.

5. EXPERIMENTAL STUDIES
Orthogonal data channels are necessary requirement for multi-

channel MAC designs. 802.11 networks use 2.4 and 5 GHz bands
for their operation, so a multi-channel MAC will use the orthogonal
channels present in these bands as data channels. In this section, we
analyze the orthogonal channels present in the 5GHz band. We will
also look into the effects of close positioning of PCI interfaces in
a commodity hardware on the number of orthogonal channels. In
the experiments we use the ath5k driver in mesh mode and use the
Iperf to generate UDP traffic with a packet size of 1470 bytes. We
mainly investigated 5 GHz band in our studies.

5.1 Orthogonal channels
In theory, the 5GHz band has 20 orthogonal channels assuming

standard 802.11 channel bandwidth, but based on the regulatory do-
main the number will vary. For our domain, theoretically we have
the orthogonal channels shown on the x-axis in Fig. 4(b). To estab-
lish their orthogonal behavior, we did a basic experiment of UDP
traffic transmission using two Tx-Rx pairs. Through experiments
we found that transmissions on two consecutive orthogonal chan-

nels like (36, 40), (44, 48) etc., were interfering. Fig. 4(a) shows
the throughput results for the two Tx-Rx pairs where the x axis
is the channel pair they use respectively. Theoretically, the trans-
missions on the channels should not interfere, but in practice that
is not the case and throughput loss is observed. When the Tx-Rx
pairs used channels with a channel spacing in between, like (40,
48) in Fig. 4(a), they achieved full throughput without any loss.
So in practice, consecutive orthogonal channels like (36,40) are not
orthogonal, but channels with a channel spacing in between like
(36,44) are orthogonal. The reason behind the interference could
be attributed to the lack of a guard band in between two consecu-
tive channels. To mitigate the interference, one solution could be to
use low transmit power. By standardizing the transmission power
for the 802.11 standard by taking into account the multi-channel
use, we may achieve the number of orthogonal channels that are
theoretically possible.

5.2 Close interface effect
A popular approach in multi-channel MAC design is to use mul-

tiple radios on a node. To understand the effects of multiple op-
erational radios in a CPC, we conducted experiments with three
CPCs as depicted in Fig.3. In the experiments, Node 1 transmit-
ted UDP packets to Node 2 on Rx channel and Node 2 transmitted
UDP packets to Node 3 on Tx channel simultaneously. We fixed
Tx channel and varied Rx channel, and measured packet error rate
(PER) of the Rx channel link. Experiment results are shown in
Fig.4(b) for Tx channels 36 and 165 with the applied Iperf load of
10 Mbps. We found a huge PER at the receiver interface of Node 2
when we applied high load at the Tx interface of Node 2. This loss
can be attributed to processing load or interference from the trans-
mitter interface. In the former case, the transmit softirq in Linux
has a higher priority over the receive softirq, so a high load at the
transmitting interface might saturate a receiving interface. In the
later case, probably the close placement of the radios or the inetr-
faces was causing interference even for orthogonal channels. To
identify the real cause of high Rx PER, we switched the Tx inter-
face to 2.4 GHz band and repeated the experiment. This time, we
found the Rx PER around 1% that shows that the cause of the high
PER was channel interference. To further confirm this, we moved
one radio away by using cable and repeated the same experiment
in 5GHz band. This time we found 0 PER, so the clear culprit of
the high Rx PER was interference caused due to the closeness of
the interfaces, which we call the close interface effect. Also by
comparing the PER for the two Tx channels in Fig.4(b), it is clear
that when we use a high frequency Tx channel and low frequency
Rx channel, interference is comparatively low than if we switch the
roles.

(a) Protocol design: control & data session and packet for-
mats.

(b) Software control unit design.

Figure 5: The protocol & software control unit.

One more observation from Fig.4(b) is that for Tx channel 36,
we see a low PER (0.01%) for Rx channel 40 that implies no in-
terference. As discussed in previous subsection, channel 36 and 40
are not completely orthogonal. So this triggers carrier sensing (CS)
on one channel if transmission is happening on the other. Same is
true for Tx channel 165 and Rx channel 161. In the previous exper-
iment, no CS was triggered as the nodes were comparitively further
apart.

For low Tx traffic loads (less than 4 Mbps), the PER was around
zero. This could be because as the traffic load goes down, the
chances of both the radios being operational at the same time goes
down and this results in less interference. So the close interface
effect comes into play for high Tx traffic loads and clearly reduces
the number of orthogonal channels, which can severely affect the
advantage of multi-channel MACs. So when designing a multi-
channel MAC testbed based on commodity hardware, one can take
care of the effect by using cables to put the antennas apart and can
also use attenuators.

6. MAC PROTOCOL DEVELOPMENT
We have implemented a modified version of the Cooperative

Asynchronous Multichannel MAC (CAMMAC) [9]. CAMMAC ex-
ploits neighboring nodes as another resource of control information
to solve the Multi-Channel Coordination problem (MCC) [9], pro-
viding a single-radio and asynchronous solution. In CAMMAC
neighboring nodes act as judges when a sender and a receiver is
setting up communication. If an MCC problem is created for the
pair, these judges will send messages to alert the pair to avoid the
problem. For this, nodes maintain a spectrum usage table to store
channels that are currently in use in the network. Each entry of
the table consists of Tx & Rx MAC addresse, data channel and
corresponding expiration time.The protocol uses a control channel
shared by all the nodes to allow them to 1) negotiate data channels
2) alert a pair of nodes of MCC problem. Control channel can be
used from any of the following: a) network has a licensed spec-
trum, b) an unlicensed band such as the ISM/UNII bands. On the
control channel, nodes negotiate for a data channel by following
a handshake called control session as shown in Fig. 5(a). In the
control session, a sender and a receiver negotiate a data channel
using an mRTS/mCTS exchange, which is followed by a coopera-
tion phase where neighbors can alert the pair of any MCC problem.
Then in the data session, both nodes switch to their chosen data
channel and the sender senses the channel for duration Tcs, and if
free, sends packets to the receiver based on the TxOp limit. The

receiver replies with a combined ACK (cACK) at the end of the
TxOp.

The modified design has optimized control channel handshake
that increases the protocol robustness. Following is the imple-
mented protocol design: To start the control session, a transmit-
ter first sends an mRTS carrying an index of a data channel, on
the control channel. If the receiver also deems the data channel
to be free, it will reply with a mCTS which duplicates the chan-
nel. On the other hand, if the receiver finds that the data channel
is in use by other nodes, it sends an INV packet. On receiving the
INV, the transmitter will try again with another channel. As shown
in Fig.5(a), Cocola1 and Cocola2 show the cooperation periods to
avoid deaf terminal problem and channel conflict problem respec-
tively. During the periods, a common neighbor of the sender and
the receiver may identify this problem and send an INV packet to
inform the sender to back off. A cocola period is used to miti-
gate INV collision caused by multiple neighbors who identify the
same MCC problem sending INV simultaneously. It is similar to
CSMA-CA mechanism, where neighbors with INV to send, ran-
domly choose sensing duration form U [0, cocola] where U [·] de-
notes the uniform distribution. In the rest of cases where collision
is not avoided (since not all the neighbors may hear each other), the
alarm message that the handshake should not proceed still gets con-
veyed because INV represents a negative message what is lost is the
duration information carried by INV which helps sender determine
a backoff period. This, however, does not present a serious prob-
lem, because the sender will just have to estimate a backoff period
with less accuracy. If no INV is received, both nodes will switch
to the data channel and transmitter senses the channel for duration
Tcs. if the channel is free, it sends the first data packet as a probe
and waits for ACK. Probe is used to avoid the case where only re-
ceiver receives an INV from its neighbor. Within an ACK timeout
period (Touttx), if no ACK is received, transmitter will switch back
and try again. A similar data packet time out (Toutrx) period is de-
fined for the receiver. On receiving the ACK, the sender sends data
packets to the receiver based on a particular duration called trans-
mission opportunity (TxOp). The receiver replies with a combined
ACK (cACK) at the end of the TxOp.

6.1 Implementation
To introduce our new protocol design as a software MAC, we

modified the mac80211 stack, ath5k driver (2.6.30) and the card
register values. Our main challenge was how to disable the 802.11
control unit on the card. We were able to disable control functions
like random backoff, ACK packets etc., but could not disable car-

(a) 802.11 MAC vs. CAMMAC throughput performance. (b) Number of INVs sent in two data channel experiment.

Figure 6: Performance and cooperation results.

rier sensing (CS). So we minimized the DIFS period as much as
possible to minimize the CS time. We cannot make DIFS zero as
it affects card operation and packet loss occurs. Another challenge
was to realize the new control unit in the driver. The concept of the
new MAC control unit is shown in the Fig. 5(b). The control unit
consists of 19 control logic states called internal control states, 9
timers and associated handlers. The unit uses current and previous
state flags, high resolution timers, tasklets and hard interrupts for
running the control state machine in the driver.

We use packet train transmission to implement TxOps. Packet
train based transmission required new queue management design
in the driver. When using packet trains we need to differentiate be-
tween control packets from top layers like ICMP and data packets
like UDP packets. If packet train design is used for all the packets,
it will create problem in the proper functioning of the control pack-
ets. To avoid any complication to higher layer control protocols,
we use both per packet and train based transmission. Only UDP
packets are allowed for packet train transmission.

The current control unit does not implement few features of the
design. INV for deaf terminal, cACK on the data channel (data
is sent in burst mode) and the random transmission of INV (we
assume only one neighbor will send INV, so no need to random-
ize) between 0 and cocola in the cocola periods are not currently
included. Cocola duration (also DIFS) is of 120 microseconds,
random backoff slot in the driver is of 30 microseconds and the
mRTS-mCTS exchange takes about 200 microseconds.

6.2 Limitations and Benefits of the Approach
Usually, a MAC protocol can be divided into two sets of func-

tions, one that are time critical and the other that are delay tolerant.
The time critical functions are implemented in the form of hard-
ware and the delay tolerant functions are usually present in soft-
ware. For example, one time critical function of the IEEE 802.11
MAC is the DCF, which is present in the WiFi cards. Our software
MAC approach involves implementing the whole MAC including
the time critical part of the MAC in the software (kernel space).
This limits tight time synchronization required for the time critical
functions. Since Linux is not real-time OS, the presence of other
kernel threads and user processes will add to the delay and the re-
sult is improper functioning and degraded performance. So the ap-
proach could be a draw back for MAC designs requiring strict time
synchronization. The benefit of such an implementation is that it
can be benchmarked with commercial hardware (e.g., Wi-Fi cards),
making the idea more acceptable.

7. MULTI-CHANNEL MAC EVALUATION
We evaluated the performance of the CAMMAC against the sin-

gle channel 802.11 MAC to demonstrate the advantages of a multi-
channel MAC. We conducted 3 types of experiment to evaluate
throughput performance, delay performance and Slow node effect.
The experimental topology as shown in Fig. 8 consisted of three
Tx-Rx pairs that were chosen in the testbed to support 24 Mbps
data rate and an idle node to alert in case of a channel conflict. We
used Iperf to generate UDP traffic with a packet size of 1470 bytes.
All the channels that we used in the experiments were in 5GHz
band, unused and with a channel spacing in between as par the re-
sults discussed in the section 5. Packet train size of 20 (TxOp = 11
msec) was used for CAMMAC in all the experiments.

7.1 Throughput performance
We conducted four experiments of UDP traffic transfer to mea-

sure the throughput performance of both the MACs. Two experi-
ments were based on the original 802.11 MAC (w RTS-CTS and
w/o RTS-CTS) and the other two were based on the CAMMAC.
In the CAMMAC experiment, one channel was used as the control
channel and, three (CAMMAC_3chnl) and two (CAMMAC_2chnl)
channels were used as data channels. The CAMMAC_3chnl ex-
periment was free of channel conflict by a proper channel selection
strategy of choosing the previously used channel first. In the CAM-
MAC_2chnl experiment, three pairs and only two data channels
would create channel conflict, so we placed a dedicated cooperative
node (idle node) to prevent it. We measured aggregated throughput
(Flow 1+2+3) for various loads and show the result in Fig. 6(a).
As shown, the performance of the CAMMAC slightly trails behind
that of 802.11 when total traffic load (sum of applied iperf load at
the 3 Tx) is low. This is because a single channel is sufficient for
mild channel contention, so the control session in CAMMAC acts
as an overhead and degrades the performance. As shown in Fig.
6(b), we found that there was no INV sent when the load was less
than 12 Mbps that also shows less contention. After that, as the
traffic load increases, channel contention becomes more prominent
and a single channel is no longer sufficient for data communica-
tion. As such, the throughput of 802.11 (w/o RTS-CTS) saturates
below 18 Mbps and 80211(RTS-CTS) around 15.5 Mbps. For the
CAMMAC, performance is far better than 802.11 due to its multi-
channel use enabled by the multi-channel access MAC. Although,
the contention for the control channel in CAMMAC also increases,
it is much lower than data channel contention because of the small
control-session duration. We also streamed high definition (avg.
rate 6Mbps) video over the 3 links. In case of 802.11 (w/o RTS-

(a) File transfer duration for the 3 Flows. (b) Slow node effect 802.11 vs CAMMAC.

Figure 7: Delay performance and slow node effect.

CTS), two links can play the video smoothly, but in the case of 3
links streaming hangs. CAMMAC was able to stream video on the
3 links smoothly. Due to the limitation discussed in the section 6.2,
we cannot realize the full potential of the CAMMAC. Therefore,
we firmly believe that a prototype with CAMMAC control unit in
the hardware can achieve far better performance.

7.2 File Transfer Duration & Slow node effect
In file transfer experiment, we use the same topology of the last

experiment. We transfer a file using Iperf transfer rate of 10 Mbps
and physical rate of 24 Mbps. The file transfer delays are shown in
Fig. 7(a). Again CAMMAC outperforms 802.11 under heavy load
due to its higher throughput performance. It can transfer double the
traffic than 802.11 in the same time.

Slow node experiment compares the effect of the presence of a
slow node in a mesh/ad-hoc network and how CAMMAC mitigates
this effect by multi-channel use. A slow node is a node that can sup-
port very low data rates. We use the same topology as in the last
experiments. One Tx-RX pair (slow node) is set to 6Mbps PHY
rate and the other two at 24Mbps. Results are shown in Fig. 7(b),
which clearly shows the advantage of a multi-channel MAC. A sin-
gle slow node can adversely affect the performance of a 802.11
mesh/ad-hoc network, but it will require more slow nodes in case
of CAMMAC to have the same effect due to the multi-channel use.

We would like to mention that in all the experiments 802.11
MAC had the same free channels available in 5Ghz band that CAM-
MAC used. But it could not use them because of its single chan-
nel architecture and so its throughput suffered significantly under
heavy load and due to presence of a slow node. CAMMAC on
the other hand allowed nodes to use the channels and achieved
better performance under heavy load conditions. This advocates
use of multi-channel access in mesh/adhoc networks to solve their
throughput and scalability issues.

8. CONCLUSION
The paper presents the design of a mesh testbed for multi-channel

MAC protocol development and shares the experience gained in the
development of the testbed. It demonstrates how commodity hard-
ware can be used to setup such a testbed. We present experimental
studies on the number of orthogonal channels in the 5GHz band, the
close interface effect in commodity hardware and implementation
of our 802.11 multi-channel MAC. The first two studies identify
the interference issues involved in the multi-channel MAC develop-
ment using commodity hardware and propose solutions to mitigate
the effects. The third experimental study bridges the gap between a

Figure 8: Experiment Topology.

multi-channel MAC design simulations and its performance in the
real world. We carry out experiments on the testbed to evaluate
the performance of our multi-channel MAC. By comparing to the
802.11 single channel MAC, we find that multi-channel MAC can
indeed reap the benefit from using multiple channels and signifi-
cantly outperforms 802.11 MAC. This is even despite the fact that
in our experiments, 802.11 runs in hardware and the multi-channel
MAC runs in software which is about a magnitude slower than
hardware. Our future work includes large scale multi-hop exper-
iments and comparing our MAC with other multi-channel MACs.

9. ACKNOWLEDGEMENT
We would like to thank Mr. Buddhika De Silva and Dr. Tie

Luo for their suggestions on the testbed development. This work
was partially supported by project grant NRF2008NRF-POC001-
078 from the National Research Foundation, Singapore, and project
grant NRF2007 IDM-IDM002-069 from the Interactive and Digital
Media Project Office, Media Development Authority, Singapore.

10. REFERENCES
[1] A. Adya, P. Bahl, J. Padhye, and A. Wolman. A multi-radio

unification protocol for IEEE 802.11 wireless networks. In
IEEE Broadnets, 2004.

[2] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris.
Link-level measurements from an 802.11b mesh network. In
SIGCOMM, 2004.

[3] P. Bahl, R. Chandra, and J. Dunagan. SSCH: Slotted seeded
channel hopping for capacity improvement in IEEE 802.11
ad-hoc wireless networks. In ACM MobiCom, 2004.

[4] J. Bicket, D. Aguayo, S. Biswas, and R. Morris. Architecture
and evaluation of an unplanned 802.11b mesh network. In
ACM MobiCom, pages 31–42, New York, NY, USA, 2005.
ACM.

[5] J. Camp, J. Robinson, C. Steger, and E. Knightly.
Measurement driven deployment of a two-tier urban mesh
access network. In ACM MobiSys, Uppsala, Sweden, June
2006.

[6] K. chan Lan, Z. Wang, R. Berriman, and et al.
Implementation of a wireless mesh network testbed for
traffic control. In WiMAN, 2007.

[7] J. Chen, S. Sheu, and C. Yang. A new multichannel access
protocol for IEEE 802.11 ad hoc wireless LANs. In PIMRC,
2003.

[8] N. Jain, S. R. Das, and A. Nasipuri. A multichannel CSMA
MAC protocol with receiver-based channel selection for
multihop wireless networks. In IEEE ICCCN, 2001.

[9] T. Luo, M. Motani, and V. Srinivasan. Cooperative
asynchronous multichannel MAC: Design, analysis, and
implementation. IEEE Transactions on Mobile Computing,
8(3):338–52, March 2009.

[10] R. Maheshwari, H. Gupta, and S. R. Das. Multichannel MAC
protocols for wireless networks. In IEEE SECON, 2006.

[11] K. Ramachandran, M. M. Buddhikot, G. Chandranmenon,
S. Miller, K. Almeroth, and E. Belding-Royer. On the design
and implementation of infrastructure mesh networks. In
WiMesh, 2005.

[12] J. So and N. Vaidya. Multi-channel MAC for ad hoc
networks: Handling multi-channel hidden terminals using a
single transceiver. In ACM MobiHoc, 2004.

[13] A. Tzamaloukas and J. Garcia-Luna-Aceves.
Channel-hopping multiple access with packet trains for ad
hoc networks. In IEEE Device Multimedia Communications,
2000.

[14] S. Weber, V. Cahill, S. Clarke, and M. Haahr. Wireless ad
hoc network for Dublin: A large-scale ad hoc network
testbed. ERCIM News, 54, 2003.

[15] J. Zhang, G. Zhou, C. Huang, S. H. Son, and J. A. Stankovic.
TMMAC: an energy efficient multi-channel MAC protocol
for ad hoc networks. In IEEE ICC, 2007.

